
09/23/2003 1

Software Engineering
Research Infusion

Tom Pressburger (ARC)

Martin Feather (JPL), Lawrence Markosian (ARC),
Tim Menzies (WVU, IV&V), Luis Trevino (MSFC)

2 of 3909/23/2003

Outline

Background
Selected software engineering
technologies

3 of 3909/23/2003

Background

NASA Software Engineering Initiative
Led by the Office of the Chief Engineer
Improve software engineering to meet the challenges
of NASA
Some of the areas of activity

Improving software development process

Training the workforce

Improving NASA guidelines, policies, procedures
and….

4 of 3909/23/2003

Infusing Software Engineering
Research

Goal
Transfer into practice

NASA-sponsored Software Engineering Research
Other new software engineering tools and technologies.

Approach
Present selected technologies to the
NASA software development community,
and

Encourage and support collaborations
between the researchers and NASA
software developers.

5 of 3909/23/2003

Collaborations
Initiated by a software developer
interested in one or more of the
technologies.
Purpose:

benefit the software development
project
validate the research
Not: further develop the research

Funding may be available for training
and customer support via…

6 of 3909/23/2003

Funding for Collaborations

Funding for several small projects available from
OSMA.

$25K - $50K per project.
Customer as PI and researcher submit a collaboration
proposal.
Proposal form will be announced in email.
Due: 11/21/04
Start: February

We will help facilitate unfunded collaborations.

7 of 3909/23/2003

Selected Technologies

Culled from
NASA-sponsored software
engineering research
leading edge commercial tools.

Reviewed by researchers at
several centers experienced
in tech transfer of software
engineering research.

8 of 3909/23/2003

Selected Technologies (continued)

Criteria
Has been successfully applied
Easily adopted
Initial focus on Software Assurance

If initial collaborations are successful, we’ll
expand research product offering in FY04.

9 of 3909/23/2003

Next Step

If you’re interested in a collaboration involving a
technology, contact us at
http://ic.arc.nasa.gov/researchinfusion/

We will broker matches of technology and
software developers.

09/23/2003 10

Selected
Technologies

Lawrence Markosian

11 of 3909/23/2003

Selected Software Engineering
Research Technologies

C Global Surveyor
Static analysis defect detection tool

Usability & Architecture
Architecture design methodology

CodeSurfer
Reverse engineering/debugging toolset

Perspective-based Inspections
Software inspection methodology

Coverity SWAT
Static analysis defect detection tool

Orthogonal Defect Classification for NASA
Process improvement methodology

Java Path Explorer
Testing tool

12 of 3909/23/2003

Technology Description Format

What is it
What problem does it solve
Features
Successes
Collaboration

13 of 3909/23/2003

C Global Surveyor
G. Brat & A. Venet, Automated Software Eng Group, NASA ARC
Funding: Code R, Communications, Information, and Computing
Technology Program, Intelligent Systems Project

What is it
Static analysis tool for finding defects in C applications
Based on “abstract interpretation”

What problem does it solve
Fast, precise code analysis to detect defects that are hard to find
through testing

Out of bounds array access

A badly initialized variable caused Mars Polar Lander to crash on Mars

I shouldn’t have turned
off the engine so soon…

Undefined variables

14 of 3909/23/2003

C Global Surveyor (continued)

Features
Scalable to at least 600K LOC applications
Precise alias analysis
Complete path coverage
Very low false positive rates
Can detect specific classes of errors in flight software with
expected 90% reduction in testing required for these errors
Analysis can be tailored to specific software architecture

Successes: Identified many undefined variables in
130K SLOC Mars Pathfinder in 45 min (for the complete
system)
280K SLOC DS-1 code in 2 hours (also for the complete
system)

x

15 of 3909/23/2003

C Global Surveyor (continued)

Collaboration
Need compilable C source code; complete build
desirable but not necessary
Tool development team:

Some customization to target application architecture
1 – 2 customer site visits for customization, installation,
training
Customer email & telephone support

Application development team:
Integrate tool into implementation & testing phases of
development
Analyze results & compare to existing practice
Feedback to tool development team

16 of 3909/23/2003

Usability & Architecture
Bonnie John, CMU; Len Bass, SEI
Funding: Code R, Engineering for Complex Systems and
Communications, Information, and Computing Technology programs,
High Dependability Computing

What problem does it solve?
Reduce risk that the software architecture
of an interactive system has to be
changed due to usability concerns.
“Yikes! You mean we CAN’T
CANCELL COMMANDS??!!”

Oh no!

17 of 3909/23/2003

Usability & Architecture (continued)
What is it?
Methodology with—

27 usability scenarios:
e.g., cancellation, information
reuse, observing system state
Benefits of including scenario
Responsibilities of the software to
support the scenarios

Methods for evaluating applicability of the
scenarios
Architecture patterns that support the scenarios

DispatcherGUI

PluginsPluginsPlugins Recorder

Save/Restore
Interface

Administrator

Network
Interface

Selector

Reuse
Repository

E-mail
Manager

User

Plugin services,
e.g., View manager

Green =
new components

Purple = modified
components

18 of 3909/23/2003

Usability & Architecture (continued)

How to use it
At architecture design (or redesign) time:

Consider usability scenarios

Decide which are important for the application
Ensure that the proposed software architecture fulfills
responsibilities listed for those scenarios

Successes
Modification of MERBoard’s architecture, based on a
usability analysis.

19 of 3909/23/2003

Usability & Architecture (continued)

Collaboration
Methodology development team:

For one project, 2 consultants to visit over 3-day period
For additional collaborations, support needed to develop a
handbook.

Application development team:
Evaluate user scenarios and select relevant ones
For relevant scenarios, work with authors to evaluate
application's architecture to ensure that it supports those
scenarios.
Work with authors to develop additional user scenarios, if any
arise during the collaboration

20 of 3909/23/2003

CodeSurfer
Developed by Grammatech, Inc.

What is it: C Source code analysis tool using—
Program Slicing

Highlights code relevant to understanding a particular issue
Does impact analysis

Pointer Analysis
Tracks loads and stores via pointers
Takes indirect function calls into account

Buffer overrun detection (with plug-in)

What problem does it solve:
More efficient—

Reverse engineering
Debugging
Safety/Security auditing
Documentation

21 of 3909/23/2003

CodeSurfer (continued)

Successes
Mitre, MIT, Thales,
Network Associates

Recently obtained by
NASA MSFC, not yet
evaluated

One user (at a large
aerospace company) reports:

“Without CodeSurfer, [manual analysis of defect root cause]
required about 2 to 5 days full time for one person. When using
CodeSurfer, the same task has been reduced to 2 hours.”

22 of 3909/23/2003

CodeSurfer (continued)

Features
Generates interactive, graphical reports

Trace data flow backward and forward through code
Display what variables a pointer can point to
Highlight code that affects selected statement(s) and/or
variable(s)
Call graph
Change impact analysis, etc.

API for customization and batch processing
Commercially supported product (CodeSurfer base
product, not including buffer overrun detection plug-in)
Approx. $2000 for single-seat floating license with 1st yr
maintenance contract (without API)

23 of 3909/23/2003

CodeSurfer (continued)

Collaboration
Need compilable C source code; build application
with CodeSurfer.
C++ version planned for release this calendar year.
Best applied on applications of up to 100K – 500K
LOC.
Tool vendor:

Provide training and consulting as necessary (for
customization)

Application development team:
Integrate tool into implementation & testing phases of
development
Analyze results & compare to existing practice
Feedback to vendor

24 of 3909/23/2003

Perspective-based Inspections
Forrest Shull et al., Fraunhofer Center
Funding: Office of Safety and Mission Assurance, Software Assurance
Research Program

What is it
Methodology for optimization
inspections by focusing reviewers’
roles.

What problem does it solve
Finding defects cheaper, earlier
Standard inspection methods:
finds around 65% of defects
Perspective-based reading:
add up to 35%
65% * 1.35 = 85.8%

25 of 3909/23/2003

Perspective-based Inspections (continued)

Successes
JPL’s Keck Interferometer

Improved quality of a reusable class library

Got inspections re-introduced on the project
“… we’ve done formal software reviews in the past, and this
variation addresses one of the fundamental difficulties we
experienced, by allowing folks to focus on specific topics
during the review process.”
-- Tim Lockhart, Keck Software Team Lead

Other work on Swift BAT and James Webb Space
Telescope (JWST)

26 of 3909/23/2003

Perspective-based Inspections (continued)

Features
Can be applied to requirements, code and other software
artifacts
No expensive tools required
Perspective-based reviewers “stand in” for specific stakeholders,
such as designers or testers.

Collaboration
Methodology development team

Provide tutorial materials, train the trainer sessions
Help tune reading methods to the artifacts being read and the
business goals of the system

Application development team:
Participate in training sessions
Consult with developers
Conduct inspections! Apply the methodology!

27 of 3909/23/2003

Coverity SWAT
Developed by Coverity, Inc.

What is it
C Source code defect detection tool combining static analysis with
statistical analysis to yield low false positive rate (typically 1 FP for
every 5 real bugs detected).
Versions for C++ and Java to be released calendar year 04

What problem does it solve
Fast, precise source code analysis to detect a wide range of
defects that are hard to find through testing.

Successes
Found over 2000 defects in Linux kernel, including many security
holes, which were fixed by the developers.
Customers include Handspring and VMware
Small-scale test on an ISS application from MSFC

Found previously-unrecognized bugs

28 of 3909/23/2003

Coverity SWAT (continued)

Features
Turn-key detection of common defects

Memory corruption

Resource leaks
Array/buffer overrun

NULL pointer dereferences

Error handling bugs

Security holes ...

Scales to millions of LOC
Extensible architecture and API for creating custom
analyses

29 of 3909/23/2003

Coverity SWAT (continued)

Collaboration
Need compilable C source code; complete build
desirable but not necessary
Vendor:

Provide product with maintenance & user documentation
Provide training and consulting as appropriate for extending
the tool

Application development team:
Integrate tool into implementation & testing phases of
development
Analyze results & compare with existing practice
Feedback to vendor

30 of 3909/23/2003

Orthogonal Defect Classification
Applied to NASA software development by Robyn Lutz & Carmen
Mikulski, JPL
Funding: Office of Safety and Mission Assurance, Software Assurance
Research Program; and National Science Foundation

What is it
Method for analyzing software bugs
to determine patterns and improve
software development process
First developed ~1990 by Ram
Chillarege at IBM, now widely used in
industry
When faults are first seen: record
“activity” and “triggering event”
When faults are fixed, record “target”
and “type” of fix

New-S/W fix
New-

Procedure Confusion-
Doc Confusion-

None

Ops

Test

Total

46

10
8

26

35

3 5

22

11

7

3 40

5

10

15

20

25

30

35

40

45

50

Requirements Classification

N
u

m
b

er

31 of 3909/23/2003

Orthogonal Defect Classification (continued)

What problem does it solve
Learning lessons from defect logs

Currently: defect logs in many incompatible formats

With ODC: generalized schema for defect logs

Provides quantitative basis for process improvement
Establishes a baseline for patterns of software defects

Much less expensive than root-cause analysis

Provides guidance in allocating funds for post-launch
maintenance
Enables effective corporate memory

32 of 3909/23/2003

Orthogonal Defect Classification (continued)

Successes
Surprises in defect logs of 8 NASA deep-space
missions

Major anomalies in flight software were due to ground software
Pattern: Hardware broke; software had to compensate for loss
(what broke wasn’t what got fixed).

Recommendations to MER and future projects
If software’s behavior confuses testers, enhance
documentation (avoid similar confusion for operators)
Earlier testing of fault protection

Next generation JPL-wide problem reporting system will
record data required for ODC
Adopted by companies such as IBM, Motorola,
Telcordia, Cisco, and Nortel

33 of 3909/23/2003

Orthogonal Defect Classification (continued)

Features
Language, platform independent
Produces customizable Excel graphs

Much local expertise

Useful to single project or to organization

Collaboration
Work with JPL’s ODC consultants
Process developer will provide training materials, presentations,
provide email/telephone support

Software developers:
Change defect logger OR
Manual translation of existing logs to ODC format (methodology at
JPL for doing this) OR
Auto-Map existing defect logs to similar ODC categories

34 of 3909/23/2003

Java Path Explorer (JPaX)
K. Havelund and A. Goldberg, NASA Ames Research Center, Automated
Software Engineering Group
Funding: Code R, Communications, Information, and Computing Technology
Program, Information Technology Strategic Research Project

What is it?
Code instrumenter for Java to output event traces
Trace analyzer

What problem does it solve?
Finds deadlocks and data races in concurrent Java
programs

Extension: finds violations of temporal requirements,
including real-time properties, for systems that react to
events in their environment

e.g., if a spacecraft is commanded to start an engine, it does
so within 10 ms

35 of 3909/23/2003

JPaX (continued)

Features
Deadlock detection scales to large programs
From one test case, JPaX can infer concurrency
problems in other executions, even if the problem
does not occur in this test

36 of 3909/23/2003

JPaX (continued)

Successes
Peter Gluck, JPL:

JPaX was run on DS-1 (Deep Space 1’s attitude control
system) rewritten in Java
“All of the problems found were of the type that would have
taken months to find because they were intermittent.”
“Found stuff we didn’t know about that improved the
robustness of the application.”

Controlled study compared with conventional testing
& model checking at NASA Ames:

Found all but one known concurrency bugs in K9 Rover real-
time executive.

37 of 3909/23/2003

JPaX (continued)

Collaborations
For concurrency analysis (this is the primary focus of
the collaboration):

Tool developers will provide user documentation, training,
consulting support.
Software development team applies tools, analyzes results.

Automatically instrument the code to emit events
Run a test case
Run analysis of event log

For temporal & real-time properties, software
development team to work with tool developers to
identify and formalize properties.

38 of 3909/23/2003

Next Step

If you’re interested in a collaboration involving a
technology, contact us at
http://ic.arc.nasa.gov/researchinfusion/

We will broker matches of
technology and software
developers.

39 of 3909/23/2003

Selected Software Engineering
Research Technologies

C Global Surveyor
Static analysis defect detection tool

Usability & Architecture
Architecture design methodology

CodeSurfer
Reverse engineering/debugging toolset

Perspective-based Inspections
Software inspection methodology

Coverity SWAT
Static analysis defect detection tool

Orthogonal Defect Classification for NASA
Process improvement methodology

Java Path Explorer
Testing tool

